
European Heart Journal (2024) 45, 4099–4110 
https://doi.org/10.1093/eurheartj/ehae552

STATE OF THE ART REVIEW 
Epidemiology, prevention, and health care policies

Micro-nanoplastics and cardiovascular 
diseases: evidence and perspectives
Francesco Prattichizzo  1*, Antonio Ceriello1*, Valeria Pellegrini1,  
Rosalba La Grotta1, Laura Graciotti2, Fabiola Olivieri3,4, Pasquale Paolisso  5, 
Bruno D’Agostino6, Pasquale Iovino6, Maria Luisa Balestrieri7, Sanjay Rajagopalan8, 
Philip J. Landrigan9,10, Raffaele Marfella11†, and Giuseppe Paolisso11,12†

1IRCCS MultiMedica, Polo Scientifico e Tecnologico, Via Fantoli 16/15, 20138 Milan, Italy; 2Section of Experimental and Technical Sciences, Department of Biomedical Sciences and Public 
Health, School of Medicine, Università Politecnica delle Marche, Ancona, Italy; 3Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, Ancona, Italy; 
4Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy; 5Department of University Cardiology, IRCCS Galeazzi-Sant’Ambrogio Hospital, Milan, Italy; 6Department of 
Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Caserta, Italy; 7Department of Precision Medicine, The University of 
Campania ‘Luigi Vanvitelli’, Naples, Italy; 8University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA; 9Program for Global Public Health and the 
Common Good, Boston College, Chestnut Hill, MA, USA; 10Centre Scientifique de Monaco, Monaco, Monaco; 11Department of Advanced Medical and Surgical Sciences, University of 
Campania ‘Luigi Vanvitelli’, Naples, Italy; and 12UniCamillus International Medical University, Rome, Italy

Received 29 April 2024; revised 28 June 2024; accepted 13 August 2024; online publish-ahead-of-print 6 September 2024

Graphical Abstract

•O2-

Air pollution

Food and water pollution

Micro and nanoplastic
(MNPs) in make-up

Autophagy

Evidence from in vitro studies and animal models

Senescence Apoptosis
Platelet

aggregation

Oxidative
stress

Endothelial
dysfunction

Fibrosis In�ammation

Association with the composite
of myocardial infarction, stroke, 

and all-cause mortality

Carotid plaques Thrombi Heart

Supposed sources
(environmental studies

and modelling)

Routes of absorption
(demonstrated in
animal models)

Evidence of MNPs accumulation in the 
cardiovascular system, as demonstrated

in ex-vivo samples from humans

Development of cardiovascular diseases in animal models

Micro-nanoplastics and cardiovascular diseases

Summary of the available knowledge relative to the possible role of micro- and nanoplastics (MNPs) in cardiovascular disease. Environmental and 
modelling studies suggest that air (both indoor and outdoor), water (both bottled and tap water), food, and cosmetic products are possible 

* Corresponding author. Email: francesco.prattichizzo@multimedica.it, antonio.ceriello@multimedica.it
† These authors equally contributed.
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/eurheartj/article/45/38/4099/7750375 by guest on 13 M

arch 2025

https://orcid.org/0000-0002-2959-2658
https://orcid.org/0000-0002-7017-778X
mailto:francesco.prattichizzo@multimedica.it
mailto:antonio.ceriello@multimedica.it
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/eurheartj/ehae552


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sources of exposures to MNPs in humans. Such MNPs can be absorbed through inhalation, ingestion, or even skin contacts, as suggested by animal 
models. Once reached the bloodstream, such MNPs might accumulate in multiple cardiovascular tissues, as evidenced by studies employing ex- 
vivo samples from humans. Here, they might promote the activation of a number of deleterious pathways promoting low-grade inflammation, 
oxidative stress, endothelial dysfunction, alteration of autophagy, and apoptosis, as proposed by experiments in vitro and in animal models. In 
humans, the presence of MNPs in carotid plaques is associated with the subsequent incidence of a composite of myocardial infarction, stroke, 
and all-cause mortality.

Abstract

Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence 
suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel 
CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and 
inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease 
and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in athero-
sclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial 
appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence 
within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role 
of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the 
possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing 
between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from 
such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic pro-
duction and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty 
that is currently in negotiation.

Keywords Plastics • Pollution • Cardiovascular events • Heart disease • Environmental • Exposome

Introduction
The discovery of petroleum-derived plastics has transformed the in-
dustrial landscape, permeating every facet of manufacturing and con-
sumption. Their low cost and ease of production have made plastic 
polymers the predominant materials for a wide range of applications, 
from food packaging to construction.1 However, a reconsideration of 
plastics’ ecological repercussions and sustainability considerations is 
gradually limiting their unfettered use and has prompted the United 
Nations Environment Assembly to call for development of a Global 
Plastics Treaty.2

Beyond the well-established environmental threat associated 
with plastic-related pollution, there is need to deepen understanding 
of the possible consequences on human health of widespread use 
of plastics.3 While there are already warnings that plasticizers and 
other plastic-associated chemicals, such as Bisphenol A and phtha-
lates, promote a range of adverse health outcomes through their 
endocrine-disrupting properties and other mechanisms,4 recent evi-
dence suggests a possible deleterious role for micro- and nanoplas-
tics (MNPs).

Microplastics and nanoplastics are plastic particles with sizes below 
5 and 1 µm, respectively. MNPs can be primary, e.g. manufactured 
MNPs deliberately added to products, such as cosmetics, or secondary by-
products of the chemical and/or mechanical fragmentation of plastic- 
related waste.5,6 MNPs have become widespread throughout the Earth’s 
biosphere and are detectable in the air, water, food, and drinking water.2,7,8

Animal models suggest that MNPs might be absorbed through ingestion, 
inhalation, or even through skin contact, and that they trigger a range of 
possible adverse health effects.9 Recent estimates suggest that humans 
might inhale or ingest millions of MNP fragments via these routes during 

their life.10 Accumulating evidence suggests that MNPs accumulate in dif-
ferent tissues in humans.11

Among the range of possible effects on human health, MNPs are 
emerging as a possible risk factor for the development of cardiovascular 
diseases (CVD). Findings from in vitro studies advance the hypothesis 
that MNPs trigger a range of pathophysiological pathways in cells rele-
vant to the development of CVD. These involve pathways through 
endothelial and immune cells and involve pathophysiologic alterations 
that include endothelial dysfunction and immune activation. These find-
ings are corroborated by animal models that suggest such alterations 
following treatment with MNPs.12 Preliminary evidence from humans 
substantiates the accumulation of and a possible pathological role of 
MNPs in the cardiovascular system.12–15

Here, we briefly summarize the major mechanistic studies linking 
MNPs to CVD in preclinical models to then synthesize the data showing 
MNP accumulation in humans. We focus on studies reporting the de-
tection of MNPs in cardiovascular tissues, discussing the reported asso-
ciation with CVD and related phenotypes. Finally, we suggest the need 
for future studies to further elucidate the possibility that MNPs may be 
a novel risk factor for CVD.

In vitro effects of MNPs on 
endothelial and immune cells
A number of studies have explored the impact of different MNPs on 
endothelial cells, immune cells, and other cell types relevant for the 
pathogenesis of CVD.12 Given the initial lack of data relative to the ac-
cumulation of MNPs in humans, pioneering in vitro experiments have 
focused largely on MNP types with the highest likelihood of contact 
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with humans, e.g. polystyrene.12 However, a range of MNP sizes, doses, 
and shapes have been tested (summarized in Supplementary data 
online, Table S1).

Experiments with labelled MNPs or other techniques suggest their 
ability to enter different cell types. Indeed, following in vitro treatment, 
MNPs are not only detectable within cells with a known phagocytic ac-
tivity, e.g. macrophages, but also in endothelial and other cells, possibly 
due to the ability of MNPs to disrupt membrane properties.16–19

Once they are inside, cells unsuccessfully try to digest MNPs, engulfing 
their lysosomes.18–21 In the case of monocytes/macrophages, MNP 
accumulation in the cytoplasm is paralleled by the accumulation of lipid 
droplets, a known step in the formation of foam cells.20 With the goal of 
eliminating the foreign particle, immune cells activate NADPH-oxidase 
and other enzymes to produce reactive oxygen species, e.g. superoxide 
and hydrogen peroxide, which in turn foster a pro-oxidant cascade.22

Of interest, MNPs might also generate free radicals, even before con-
tact with living cells, due to the effect of photo oxidation or UV light 
radiation in the environment, even though the health relevance of 
this phenomenon is unknown.23 The induction of oxidative stress by 
MNPs is common in multiple cell types, including endothelial cells,24

and not confined to specialized phagocytes.
Parallel and/or subsequent to oxidative stress, MNPs foster inflam-

matory responses in multiple cell types. Indeed, different MNPs can 
promote the activation of the NLRP3 inflammasome, of NF-κB, and 
of other major pro-inflammatory pathways.25–28 Of note, data suggest 
that phagocytosis might not be necessary to induce such phenomena, 
possibly extending the detrimental effect of MNPs also beyond a certain 
size, intuitively required for ingestion by cells.29,30 However, in case of 
internalization, the activation of the innate immune system is an obvious 
consequence of such event. Indeed, crystalline silica, metals, asbestos, 
and other exogenous as well as insoluble endogenous particles, e.g. ur-
ate or cholesterol crystals, are all well-established triggers of sterile, 
chronic, low-grade inflammation.29,31

Another key phenomenon possibly linking MNPs to low-grade in-
flammation is cellular senescence, which is defined as a permanent state 
of cell cycle arrest coupled by the secretion of pro-inflammatory and 
other factors.32 A number of reports evidenced an increase in rates 
of senescence in multiple cell types, including endothelial cells, after 
treatment with different types of MNPs.33–35 Cellular senescence, simi-
lar to oxidative stress and the inflammasome, is increasingly becoming a 
therapeutic target for drug development. Selected compounds pro-
mote the clearance of senescent cells while others prevent their forma-
tion or suppress their noxious pro-inflammatory program.36 One 
report suggests that sodium–glucose cotransporter-2 (SGLT-2) inhibi-
tors, a class of glucose-lowering drugs, can attenuate the senescence in-
duced by MNPs, which increases the expression of this transporter in 
the membrane of endothelial cells.34 Of note, SGLT-2 inhibitors have 
demonstrated cardioprotective properties in multiple contexts.37–39

Experiments using whole blood evidenced a range of effects asso-
ciated with MNP treatment, including the induction of platelet aggre-
gation, hemolysis, and immune cell activation.16,40–42 However, 
most of this in vitro work used unrealistic doses of MNPs possibly 
not relevant to emerging pharmacokinetic evidence from human sam-
ples (see below). Similarly, most of the MNP types tested were not 
necessarily those found in tissues in later work or were of different 
sizes (see Supplementary data online, Table S1). These aspects might 
limit the mechanistic relevance of these findings, especially considering 
that the chemical properties and the size of MNPs influence their ab-
sorption, distribution, internalization by cells, and ability to promote 
deleterious pathways.43–48 Preliminary data suggest that positively 

charged MNPs might be especially harmful, particularly in regards to 
platelet aggregation.49

In summary, the available in vitro evidence suggests that MNPs can en-
ter human cells and foster a large range of pathophysiologic pathways 
and mechanisms previously associated with CVD development, i.e. oxi-
dative stress, cellular senescence, platelet aggregation, and especially 
low-grade inflammation. If confirmed by preclinical studies employing 
pertinent dosages and types of MNPs, these phenomena might re-
present possible points of intervention to limiting the damage induced 
by MNP accumulation.

MNP absorption and 
cardiovascular effects in 
experimental models
Data from animal models suggest the possibility that all the three main 
routes of entry—inhalation, ingestion, and even skin contact—can 
allow MNPs to be absorbed into the body.11,50,51 Particle size influ-
ences the ability of MNPs to reach multiple tissues, and the absorption 
and distribution of MNPs increase as particles size decreases.45,52,53

Similarly, the physicochemical features of different MNPs affect their 
ability to reach distant organs, with negatively charged MNPs being 
characterized by a higher degree of distribution.47 Of note, highly vas-
cularized organs and blood vessels seem to preferentially accumulate 
MNPs.12,54

While a number of reports suggest that MNPs alter the development 
of the cardiovascular system in organisms, such as zebrafish and other 
fishes,12 fewer data are available relative to the cardiac effects of MNPs 
in rodents (summarized in Table 1). Short-term, oral exposure to poly-
styrene MNPs in mice and rats results in accumulations in the blood and 
the heart, with detectable levels in isolated cardiomyocytes.45,47,57,67

MNP treatment is associated with a wide range of deleterious effects, 
including cardiac fibrosis, capillary hyperemia or congestion, thinner 
or ruptured myocardia, myocardial fibre breakage, myocardial inflam-
matory injury or apoptosis, and the subsequent elevation of cardiac 
enzymes.57–59 These phenotypes are promoted by the activation of 
the Wnt/β-catenin and the NLRP3/caspase-1 signaling pathways, as 
well as by interference with electrical synchronization.57–59 The ability 
of MNPs to alter the cardiac structure was also confirmed in human- 
derived organoids.63 At the microvascular level, treatment with MNPs 
in mice or rats is associated with an increase of pro-thrombotic phenom-
ena after stimulation.49,55,56

Mechanistically, acute exposure to MNPs evokes consistent inflam-
matory and immune responses.62 Indeed, treatment with polystyrene 
MNPs promotes endothelial inflammation, as evidenced by an in-
creased expression of interleukin (IL)-1β and intercellular adhesion 
molecule-1 in the aortic tissue25 while also enhancing enhanced aortic 
sensitivity to phenylephrine.60 Of note, the induction of chronic, sys-
temic pro-inflammatory responses by MNPs involves also the adipose 
tissue, a phenomenon that might occur also independently of the ab-
sorption of particles. Indeed, administration of polystyrene MNPs 
through drinking water in mice induce weight gain and an increased ex-
pression of IL-6 and monocyte chemoattractant protein-1 in the peri-
vascular adipose tissue, an effect paralleled by a large derangement of 
the microbiome.60

Multiple reports have confirmed pro-atherosclerotic effects of 
MNPs in animal models. Indeed, polystyrene MNPs, gavage-fed to high- 
fat diet-fed mice promotes arterial stiffness and atherosclerotic plaque 
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formation. MNPs activate phagocytosis of M1-macrophages, disrupting 
lipid metabolism, and fostering foam cell accumulation.65 In addition, an-
other study suggested that the vascular injury induced by chronic ex-
posure to low-dose polystyrene MNPs could be mediated by their 
ability to induce vascular smooth muscle cell phenotypic switch.66

Whatever the mechanism, experiments with labelled MNPs clearly sug-
gest that their uptake results in vascular toxicity and the thickening of 
the arterial wall.54

In summary, similar to the in vitro work, most of animal experiments 
have employed polystyrene MNPs, preferentially in acute settings, with 
a high dosage of particles administered through ingestion. This aspect 
may limit the human relevance of such findings. In addition, it impedes 
drawing firm conclusions relative to which MNP type is more harmful, 
given the lack of comparative studies. However, even chronic, low-dose 
administration of MNPs in mice and rats is associated with a range of 
cardiovascular alterations, including direct cardiac damage and a perva-
sive pro-atherosclerotic effect (Table 1). Whether there is a clear 
threshold in terms of dosage and/or duration of exposure that is re-
quired to exert deleterious effect has not been thoroughly explored.

Evidence of MNP accumulation in 
humans
A consistent burden of evidence documents the widespread presence of 
MNPs across diverse environmental domains, such as surface water, sedi-
ment, wastewater, sea ice, indoor and outdoor air, bottled and tap water, 
and multiple foods.11,68,69 A recent estimate suggests that 86 to 710 tril-
lion MNP particles contaminate European agricultural land each year,70

with virtually all MNP types being detectable in this context.71 The dis-
covery of MNPs in seafood, honey, milk, beer, table salt, drinking water, 
and airborne particles is now spurring the study of the potential impacts 
of these particles on human health.11,72,73 A mathematical model sug-
gests a staggering per capita intake of 74 000–121 000 MNPs annually 
through the consumption of food, water, and dust, and inhalation of 
air.72 Another model estimated the yearly intake to range from 39 000 
to 52 000 items per person . This included contributions from various 
sources, such as 37–1000 MNPs from sea salt, 4000 from tap water, 
and 11 000 from shellfish.72 Further insights emerged from a probabilistic 
lifetime exposure model, which projected MNP intake rates of 184 ng/ 
capita/day for children and 583 ng/capita/day for adults across nine differ-
ent possible exposures.74 A systematic review of articles assessing pos-
sible exposure from multiple sources estimated a yearly mass-based 
intake ranging from 15 to 287 g per person,75 highlighting the multifacet-
ed nature and potentially large scale of human exposure to MNPs.

Given this potentially broad exposure, studies have investigated evi-
dence of MNP accumulation in human tissues. The technologies used 
for detection in many of these studies are not uniform. Raman spec-
troscopy, Fourier transform infrared (μFTIR) micro-spectroscopy and 
laser-directed infrared (LD-IR) estimate the MNP size and the relative 
number in the sample analysed, but do not provide the effective con-
centrations of the compounds detected in terms of weight of selected 
MNP/weight of the tissue. In contrast, pyrolysis–gas chromatography– 
mass spectrometry (Py–GC/MS) furnishes an estimate of the concen-
tration of different plastic types, but without information relative to 
MNP size and number. Given these limitations, information collected 
from different tissues with diverse technologies are not standardized 
and might not always be comparable.

Supplementary data online, Figure S1 summarizes all the evidence rela-
tive to the detection of MNPs in the human tissue with the exception of 

the cardiovascular system. Evidence of the presence of MNPs has been 
provided in samples from multiple human tissues or biological fluids, 
such as the placenta,76–79 lung,80–82 liver,83 breastmilk,84 urine,85 sputum,86

stool or meconium,77,78,87–89 blood,90 kidney,91 colon,92 semen/testis,93

and the endometrium.94 Thus, virtually every human organ may accumu-
late some forms of MNPs. Relative to their size, MNPs of up to 30 µm in 
size have been detected in the liver, up to 10 µm in placenta, up to 88 μm 
within lungs, up to 10–15 µm in breastmilk, urine, and the kidney, up to 
500 μm in the endometrium, and even larger particles in the colon (see 
Supplementary data online, Figure S1). The evidence relative to the lungs 
and the colon might suggest that both inhalation and the ingestion are pos-
sible routes of MNP absorption. In addition, they might highlight that, at 
least in selected subjects, the proposed threshold of MNPs size for their 
entrance, i.e. 150 μm, might not always be respected.52 By contrast, most 
of the MNPs detected in difference tissues were below 10 μm in diameter, 
supporting a higher degree of absorption and/or distribution for smaller 
particles. Of note, one study suggested a possible gender-related differ-
ence in MNP accumulation, with women showing a higher abundance 
of detectable MNPs in samples from tonsils, lungs, and the intestine.95

Possible phenomena explaining this observation might be a higher expos-
ure to MNPs in women or simply a difference relative to body structure 
or weight.

The same studies identified more than 10 different types of polymers 
in human tissues. Among others, those most commonly identified were 
polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate 
(PET), polypropylene (PP), and polystyrene (PS) (see Supplementary 
data online, Figure S1). This might be attributable to the fact that these 
compounds are those more commonly tested. Alternatively, these mo-
lecules may be more often detectable since they are those with the wid-
est range of application in everyday life and are found in animal species 
as well as humans. Indeed, most food, liquid, or cosmetic containers, as 
well as water pipes, are made of these plastics, rendering hard to distin-
guish and quantify the contributions from multiple, diverse sources of 
potential exposure.

Most of the studies providing evidence of the presence of MNPs in dif-
ferent organs have not found evidence for a link or association with 
a pathological phenotype. Thus, the available evidence is insufficient to 
posit a clear, general pathogenic role for MNPs at present. With the ex-
ception of CVD (see below), only two studies found a cross-sectional as-
sociation between MNPs presence and a disease. Indeed, MNPs were 
detectable in patients with cirrhotic disease, but not in healthy livers,83

while the abundance of MNPs in stool samples was higher in patients 
with inflammatory bowel disease compared with subjects without this 
condition.89 Thus, more studies with clinical data and especially longitu-
dinally collected hard endpoints are necessary to sustain a broad patho-
genic role for MNPs.

MNPs in the human cardiovascular 
system
The cardiovascular system, and in particular the endothelium, is ex-
posed to all of the substances present into the bloodstream. Given 
that MNPs are small enough to be absorbed and be detectable in blood, 
it is conceivable that such particles can also penetrate blood vessels. At 
least five reports have documented the presence of at least one type of 
MNPs in ex-vivo samples derived from the cardiovascular system (sum-
marized in Figure 1).

A preliminary study analyzing five human saphenous vein tissue sam-
ples using μFTIR spectroscopy (size limit of 5 μm) reported not only a 
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high background contamination, but also detectable levels of MNP 
types not present in blank samples. MNPs were mostly of irregular 
shapes, and five different polymers were detected.15 Another study ex-
plored the presence of MNPs in 15 patients undergoing cardiac surgery, 
assessing the presence of particles through LD-IR and SEM in pericardia, 
epicardial adipose tissues, pericardial adipose tissues, myocardia, left 
atrial appendages, and pairs of pre- and post-operative venous blood 
samples. This study found a range of nine different MNP types in both 
cardiac tissues and blood samples, with particle sizes up to 469 μm in 
diameter. However, the size of most of the MNPs was <50 μm. 
Technically, the LD-IR system does not identify MNPs with a diameter 
smaller than 20 μm, impeding an estimate of the abundance of MNPs 
in the very small range (which should have a higher degree of distribu-
tion). By contrast, the authors confirmed the presence of poly(methyl 
methacrylate) in the left atrial appendage, epicardial adipose tissue, and 
pericardial adipose tissue that could not be attributed to accidental ex-
posure during surgery, thus sustaining the possible accumulation of 
MNPs in the heart.14

Two studies assessed the presence of MNPs within thrombi col-
lected from different vascular regions. While a preliminary study em-
ploying Raman Spectrometer found evidence of low-density PE 
particles below 6 μm,96 a recent manuscript found evidence for a range 

of different MNPs in thrombi from a heterogeneous cohort of 30 pa-
tients undergoing thrombectomy due to ischemic stroke, myocardial 
infarction, or deep vein thrombosis.97 According to Py–GC/MS, 24 of 
30 thrombi assessed had detectable levels of MNPs and in particular 
of polyamide 66 (PA66), PVC, and PE. The latter was the most abun-
dant being present in more than half of the samples, with a mean diam-
eter of 35.6 μm. The shapes of MNPs according to LDIR and SEM were 
heterogeneous. Of note, concentration of MNPs was associated with 
disease severity, while the level of D-dimer was higher in patients 
with evidence of MNPs compared with those without, suggesting a 
cross-sectional association with the severity of CVD.97

Two independent studies evaluated the presence of MNPs into 
samples derived from atherosclerotic plaques and provided data 
that were somewhat discordant yet compatible with the evidence 
previously collected from thrombi. One study quantified 10 types 
of MNPs through Py–GC/MS in plaque specimens obtained from ca-
rotid or coronary arteries, as well as samples from aortas.98 All these 
three sample types had detectable levels of PA66, PVC, PE, and PET, 
with the latter being the most abundant. Of note, the concentration of 
MNPs in arteries containing atherosclerotic plaques, both coronary 
and carotid arteries, was significantly higher than that in aortas, which 
did not contain atherosclerotic plaques, suggesting that MNPs might 

Figure 1 Evidence of micro- and nano-plastic (MNP) accumulation in the human cardiovascular system and the brain. Summary of the evidence rela-
tive to the presence of different MNPs in human samples from the cardiovascular system, along with the technology used for their detection, the size or 
the concentrations of the different MNPs, and the clinical observations associated with the presence of MNPs. List of acronyms: PC, polycarbonate; 
μ-FTIR, micro Fourier transform interferometer spectroscopy; LDPE, low-density polyethylene; PET, polyethylene terephthalate; PP, polypropylene; 
PS, polystyrene; PU, polyurethane; PVC, polyvinyl chloride; LD-IR, laser direct infrared spectroscopy; PA, polyamide; PVA, polyvinyl alcohol; PVAc, 
polyvinyl acetate; PMMA, polymethyl methacrylate; Py–GC/MS, pyrolysis–gas chromatography–mass spectrometry; nylon-EVA, nylon ethylene-vinyl 
acetate; SEM, scanning electron microscopy
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accumulate preferentially into sites of atherosclerosis.98 Another 
study used the same technology to quantify MNPs specifically in ca-
rotid plaques excised from 257 patients undergoing carotid endarter-
ectomy and followed-up for 3 years to monitor the incidence of 
myocardial infarction, stroke, and all-cause mortality, which repre-
sented the primary endpoint.13 Among these, 150 patients had 
evidence of PE within the plaque, whereas 32 of these also had meas-
urable amounts of PVC. Analysis with electron microscopy revealed 
the appearance of ‘jagged-edged particles’ both among plaque macro-
phages and scattered in the external debris. Patients with evidence of 
MNPs had a higher expression of inflammatory markers, i.e. IL-18, 
IL-1β, tumor necrosis factor-α, IL-6, CD68, and CD3, and a lower 
abundance of collagen within the plaque. More importantly, patients 
in whom MNPs were detected within the atheroma were at higher 
risk for a primary end-point event than those in whom these sub-
stances were not detected, a finding that represents the first evidence 
of prospective association between MNPs and an hard health out-
come and in particular CVD.13

Evidence relative to accumulation of MNPs in brain vessels has not 
yet been provided. However, a recent manuscript reported evidence 
for the presence of MNPs in brain samples derived from autopsies, sug-
gesting that brains may accumulate higher concentrations of MNPs 
compared with liver or kidney samples, and that such levels of MNPs 
increased during years.99 Associations of MNPs with specific pheno-
types were not explored.

Beyond the direct evidence of MNP accumulation in the cardiovas-
cular system, one study explored the possibility of an indirect associ-
ation between the MNP delivery to the intestine and CVD. In 47 
patients in a study distinguished by the presence of absence of calcifica-
tion in the thoracic aorta wall, the presence of MNPs in stool samples 
from this population through μFTIR was evaluated. Patients with vascu-
lar calcification had higher levels of total MNPs, PP, and PS in feces than 
patients without this condition, while the thoracic aortic calcification 
score was positively correlated with MNP levels.61 These results could 
support the hypothesis, described above in animal models, that MNPs 
do not need to be absorbed to promote deleterious effect on the car-
diovascular system. Alternatively, they could simply reflect a higher ex-
posure to MNPs in patients with CVD.

Overall, these data highlight that MNPs comprised various polymers, 
and plastic additives have been identified in thrombi, atherosclerotic 
plaques, and other cardiovascular tissues from humans. MNPs might 
have a propensity to accumulate within regions with vascular lesions, 
and their presence in the carotid plaque correlates with a subsequent 
heightened risk of cardiovascular events or mortality.

Open questions and future 
research
Every stage of the plastic life cycle, from extraction of the coal, oil, and 
gas that are its main feedstock through to their ultimate disposal into 
the environment, is detrimental to the environment and potentially 
harmful for human health. The extent and the magnitude of the issue, 
as well as its economic cost, have only partially been explored.3

Geographical variations are influenced by economic, anthropogenic, 
and cultural factors and environmental conditions. The lack of consist-
ency and standardization of sampling and analytical methods for detec-
tion of MNP pollution inhibits a global comparison of MNP deposition.5

Increasing efforts are required to better comprehend the sources, 
pathways, and impacts of MNPs on ecosystems and human health.100

These include studying the long-term effects of exposure to MNPs, 
identifying emerging sources of pollution, and developing specific and 
sensitive methods for detecting and quantifying MNPs in different envir-
onmental and biological matrices. In addition, the technology used to 
detect MNPs should be standardized. Innovative or repurposed ap-
proaches to chemically detect and quantify MNP in vivo and the putative 
development of biomarkers of toxicity in human biological samples, 
such as blood or saliva, remain major issues that need to be addressed.

The relationship between exposure and accumulation of MNPs in 
human tissues is a critical issue in assessing causation of the health ef-
fects of plastic pollution. There is little evidence, for example, of an as-
sociation between lifestyle choices and the accumulation of MNPs in 
human tissues. A relevant issue is to assess what types of exposure, in-
halation, ingestion, or dermal exposure are most relevant for cardiovas-
cular health. To get as these questions, a key variable is to estimate the 
dose of exposure. At present, there is no validated instrument, e.g. a 
structured questionnaire, to assess the exposure to plastic-related pol-
lution. Such an instrument, coupled by the temporal relationship be-
tween exposure and accumulation in tissues, would facilitate the 
design of long-term, prospective studies linking exposure, absorption, 
and accumulation to the incidence of hard outcomes, including CVD, 
favoring also the study of the existence of a putative safety limit.

Several molecular mechanisms might both facilitate tissue uptake of 
MNPs and increase their pathogenicity. Also, MNPs have potential to 
act as potential transporters of contaminants and as chemosensitizers 
for other toxic substances. Following exposure, bioavailable particles 
that enter the circulatory system can translocate to secondary organs, 
where they might accumulate to a level that could result in adverse ef-
fects at the cellular level. However, there are currently many open 
questions regarding how plastic particles of different sizes are distribu-
ted in the body, including the localization in specific cells, such as those 
of the immune system. A comprehensive approach to understand the 
immunotoxic effects of MNPs and their immunogenicity is warranted. 
The mechanisms of MNP adhesion and uptake and their accumulation 
should also be extensively investigated.

The evidence collected to date relative to MNPs and CVD is associa-
tive and derives from patients with manifest CVD. Thus, no cause-effect 
relationship can be considered established at this stage. For instance, rela-
tive to the association of MNPs within the carotid plaque and CVD and 
given that MNPs seem to accumulate within plaque macrophages,13 it is 
unknown whether MNP accumulation precedes or follows macrophage 
accrual. Indeed, it is possible that patients with a poor plaque phenotype 
and thus with a more consistent immune infiltrate has a greater tendency 
to uptake MNPs. Alternatively, it is possible that MNPs promote a sys-
temic and/or a local inflammatory response, fostering the development 
and the instability of plaques. To sustain causality, long-term prospective 
studies with healthy subjects are necessary, possibly exploring both inter-
mediate, e.g. measures of luminal narrowing, and hard outcomes. Ideally, 
these studies should link MNP burden in the blood, and not only in car-
diovascular tissues, to CVD, in order to sustain a pathogenic role of 
MNPs and to explore whether the association between MNPs and 
CVD extends beyond patients with already manifest disease.

In vitro and animal studies have demonstrated the toxic potential of 
MPs and NPs in various cell lines and species. This experimental evi-
dence however remains limited, and further research is needed to elu-
cidate the physicochemical factors of MNPs on toxicity of particle size 
and dose on the cardiovascular system, particularly using biologically 
relevant exposure levels and durations.101 In preclinical animal models, 
MNPs promote oxidative stress, platelet aggregation, senescence, and 
inflammatory responses in vitro while inducing the development of 
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atherosclerosis and several other cardiovascular alterations. However, 
most of these studies were conducted employing high doses of MNPs 
or used MNPs types with no evidence of accumulation in the human 
cardiovascular system. Indeed, while most preclinical studies employed 
PP and PS particles, evidence from ex-vivo samples taken from athero-
sclerotic plaques, thrombi, and multiple cardiac tissues suggests that 
PET, PA66, PE, and PVC of various size and shapes are detectable in 
such samples, with the latter two being prospectively associated with 
the incidence of CVD or mortality. Thus, preclinical studies should 
now be tailored to test pertinent MNP types and dosages.

Plastics are virtually ubiquitous in today’s world, and thus establishing 
the key exposures driving their accumulation will be challenging. At pre-
sent, there is no questionnaire instrument or validated laboratory proced-
ure to assess exposure to plastics, and there are no studies exploring the 
associations between potential sources of exposure and MNP accumula-
tion in tissues. Moreover, given that quantitation of MNPs in plaque sam-
ples at large scale is currently unfeasible, unless a non-invasive ad-hoc 
imaging method is developed, a standardized and cheap approach for 
MNP dosage in blood might be necessary. It is thus not yet possible to de-
termine which, if any, MNP types are more harmful, information that could 
help in the implementation of mitigation or preventive measures, e.g. a re-
duced use for those plastics with an established pathogenic role.

To establish causality between MNPs and CVD, the accumulation of 
MNPs needs to be shown to precede the development of intermediate 
markers of atherosclerosis or other mechanisms of cardiovascular 
damage in a broad, non-selected population of people. Similar studies 
have already been conducted for other pollutants.102 At present, blood 
MNPs have not been linked to hard outcomes and, thus, specific studies 
are necessary. Large prospective studies collecting detailed lifestyle 
information coupled by serial blood sampling and monitoring the long- 
term incidence of hard outcomes are urgently needed to obtain a real-
istic picture of the relevance of the possible role of MNPs in driving 
CVDs. Indeed, available evidence derives from pathological contexts, 
e.g. from already formed atherosclerotic plaques or thrombi, impeding 
any speculation relative to a causal role and confining the associative 
evidence to patients with already manifest CVD. The knowledge avail-
able at present and relative to the possible role of MNPs in CVD is sum-
marized in the Graphical Abstract.

In the event that a causal role for MNPs in the development of CVDs 
is established, need will emerge to develop potential preventive or 
therapeutic strategies. Limiting exposure to MNPs should be the pre-
ferred approach and, demonstration of a decline in CVD incidence fol-
lowing a reduction in plastic manufacture would further boost the 
argument for causality. However, the trajectory of plastic production 
is not likely to decline in the near-term future.3 Thus, beyond encour-
aging people to adopt behaviours limiting their personal exposure, e.g. 
minimizing the consumption of food and beverages packed in plastic 
containers, therapeutic strategies may also be envisaged. If the molecu-
lar mechanisms instigated by MNPs are confirmed, any medication 
counteracting such pathways might limit the deleterious consequences 
of MNPs. The enzymatic degradation of plastics might also be an option, 
similar to what has been proposed for the environment.103 However, 
none of these possible approaches has been tested for safety nor effect-
iveness at present, not even in animal models.

Conclusions
The chemical exposome is increasingly recognized as a possible driver 
of CVD.104 Given the substantial residual environmental risk despite 

proper control of multiple risk factors, increasing levels of chemical ex-
posures have been hypothesized as being relevant.105,106 While solid 
mechanistic and epidemiological evidence support many external pollu-
tants, such as air pollution and some chemical exposures, there remain 
substantial gaps with plastics and related chemicals.107 Recently, a large 
consensus statement called for attention relatively to the possible ef-
fects of plastic pollution on health. The production and the improper 
disposal of plastic waste are held to impact human health at multiple le-
vels.3 Plasticizer chemicals have already been linked to a range of cardi-
ometabolic diseases,4 and plastic production can also affect human 
health and CVD development through multiple indirect routes.3

Recent data now suggest also MNPs as possible risk factors for CVD. 
Given the complexity of the topic, a multi-disciplinary effort is manda-
tory to gain more information relative to the role of MNPs in CVD and 
eventually other diseases. A large range of professional figures with di-
verse expertise is necessary to encompass every facet of the chain in-
itiated by plastic-related pollution. It is easy to anticipate that the 
coordinated use of multiple technologies in large-scale studies and con-
sistent economic investments through dedicated funding schemes will 
provide detailed and much needed information on the topic. In the 
meanwhile, relevant stakeholders should not ignore the already avail-
able evidence and should try to maximize the ongoing efforts aimed 
at reducing plastic production. This would translate into a benefit for 
the earth and, possibly, also for human health.
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